junction potential of the cell might not be negligible^{5b} and where the increased solubility of silver halides in excess halide would necessitate a knowledge of the association constants of AgX and X^- .

The specific Helmholtz free energies of formation ΔA of CdX⁺ and CdX₂ (where X is bromide or iodide) were evaluated using the equations of the quasi-lattice model^{9,10} (asymmetric approximation) with the coördination number Z = 6. Since the equations of the model were derived for ions of the same charge, they might not be expected to apply to a mixture of singly charged and multiply charged ions. It is seen from the values of ΔA in Table II that the variation with temperature although very small is somewhat larger than in the case of singly charged ions.¹¹ The decrease of ΔA with increasing temperature is in the same direction as was observed for the association of silver ions with sulfate

(11) D. G. Hill, J. Braunstein, M. Blander, J. Phys. Chem., 64, 1038 (1960).

ions in molten KNO₃.¹² The "specific entropy of association"⁹ $\left(-\left(\frac{\partial\Delta A}{\partial T}\right)\right)$ may be characteristic of a change in the internal degrees of freedom of the ions involved in the association, although the effect in this case is almost within the experimental uncertainty. The relatively small variation of ΔA with temperature indicates that the quasi-lattice model may be useful for predicting the temperature coefficients of the association constants of singly charged ions with multiply charged ions as well as with other singly charged ions.

Acknowledgments.—One of us (J. B.) is grateful to Dr. Milton Blander of the Oak Ridge National Laboratory for many valuable discussions and to Dr. John Hess of the University of Maine and Professor T. F. Young for their comments on the manuscript. He would like to express appreciation for support of part of this work by the Coe Research Fund of the University of Maine and by a grant from the U. S. Atomic Energy Commission, AT-(30-1)-2873, to the University of Maine.

(12) W. J. Watt and M. Blander, ibid., 64, 729 (1960).

[CONTRIBUTION FROM THE REACTOR CHEMISTRY DIVISION, OAK RIDGE NATIONAL LABORATORY,[‡] OAK RIDGE, TENNESSEE, AND THE DEPARTMENT OF CHEMISTRY, UNIVERSITY OF MAINE, ORONO, MAINE]

Thermodynamic Association Constants of Silver Ions with Bromide or Iodide Ions in Molten Potassium Nitrate and their Comparison with the Quasi-lattice Theory

By A. Alvarez-Funes,¹ J. Braunstein² and M. Blander

RECEIVED AUGUST 21, 1961

Electromotive force measurements in dilute solutions of Ag^+ and Br^- in molten KNO₃ at 403, 438, 452, 474 and 500° and Ag^+ and I^- in molten KNO₄ at 402° were used to evaluate the association constants K_1 , K_2 and K_{12} for the formation of AgX, AgX_2^- and Ag_2X^+ , respectively, where X = Br or I. The comparison of the values of K_1 in the bromide containing system with the theoretical calculations based on the quasi-lattice model demonstrated that the temperature coefficients of the K_1 are correctly predicted by the theory for any reasonable choice of the coördination number using values of the "specific bond free energies" ΔA_1 , which are independent of temperature. For Z = 5 average values of ΔA_1 , ΔA_2 and ΔA_{13} are 7.14, 7.0 and 6.7 kcal./mole, respectively. The values of the "specific bond free energies" for the formation of the ion pairs Ag^+ -Cl⁻, Ag^+ -Br⁻ and Ag^+ -I⁻ in KNO₃ for Z = 5 are 5.8s, 7.14 and 9.3s kcal./mole, respectively, and are consistent with the relative but not absolute values of the predictions of Flood, Førland and Grjotheim.

Introduction

Measurements of the activity coefficients of AgNO₃ in molten KNO₂ in dilute solutions of Ag⁺ and Br⁻ ions at five temperatures ranging from 403 to 500° and of Ag⁺ and I⁻ at 402° are described in this paper. In previous papers the comparison with calculations based on the quasi-lattice model⁴⁻⁶ of similar measurements in dilute solutions of Ag⁺ and Cl⁻ in pure KNO₃,^{7,8} pure NaNO⁹ and in equimolar NaNO₃-KNO₃¹⁰ mixtures demon-

(1) Fellow of the Consejo Nacional de Investigaciones Científicas y Tecnicas of Argentina,

(2) On sabbatical leave from the University of Maine with the Reactor Chemistry Division of Oak Ridge National Laboratory Sept. 1960-August 1961.

(3) Operated for the United States Atomic Energy Commission by Union Carbide Corporation.

(4) M. Blander, J. Phys. Chem., 63, 1262 (1959).

(5) M. Blander and J. Braunstein, Ann. N. Y. Acad. Sci., 79, 838 (1960).

(6) M. Blander, J. Chem. Phys., 34, 342 (1961).

(7) M. Blander, F. F. Blankenship and R. F. Newton, J. Phys. Chem., 63, 1259 (1959).

(8) J. Braunstein and M. Blander, ibid., 64, 10 (1960).

(9) D. G. Hill, J. Braunstein and M. Blander, *ibid.*, 64, 1038 (1960).

strated that the temperature coefficient of the association constant K_1 for the formation of the ion pair Ag⁺-Cl⁻ is correctly predicted by the expression derived from the theoretical calculations

$$K_1 = Z \left(\exp \left(-\Delta A_1 / RT \right) - 1 \right)$$
 (1)

where Z is a coördination number and ΔA_1 is the "specific bond free energy" and was constant.¹¹ ΔA_1 was about 1 kcal. more negative in the solvent KNO₃ than in NaNO₃ and the value of ΔA_1 in the equimolar NaNO₃-KNO₃ mixture appeared to be the average of the values of ΔA_1 in the pure nitrates.

The purpose of this paper is to demonstrate that equation 1 gives a correct prediction of the temperature coefficient of K_1 in the bromide containing system. We shall show further that the generalized calculations⁶ based on the quasi-lattice model, within experimental error, lead to a correct prediction of the temperature coefficients for the as-

⁽⁹⁾ M. Blander, J. Chem. Phys., 34, 342 (1961).

⁽¹⁰⁾ M. Blander and J. Braunstein, Ann. N. Y. Acad. Sci., 79, 838 (1960).

⁽¹⁰⁾ D. G. Hill and M. Blander, ibid., to be published.

⁽¹¹⁾ In systems in which the change of the entropy of the internal degrees of freedom of the ions involved in the association process is small $d\Delta A_i/dT \simeq 0$ and $\Delta A_i \simeq \Delta E_i$.

Plotted against the mole ratio of silver nitrate in the right hand half cell in the absence of bromide or iodide ions.

sociation constants K_2 and K_{12} for the formation respectively of AgBr₂⁻ and Ag₂Br⁺ from the ion pair Ag⁺-Br⁻ if the "specific bond free energies" ΔA_1 are assumed to be independent of temperature. Lastly we will illustrate the differences in the values of K_1 and the values of ΔA_1 for the association of Ag⁺ with Cl⁻, Br⁻ and I⁻ in molten KNO₃.

Experimental

Reagent grade KBr and KI from Baker and Adamson were heated in a dry atmosphere to remove water and used as solute. Otherwise, the materials, apparatus and procedure were essentially the same as previously described.^{7,8,10}

Results

Electromotive force measurements were made of the concentration cell

$$\begin{array}{c|c} Ag & KNO_3 \\ AgNO_3 & AgNO_3 \\ KX \\ \end{array} \begin{vmatrix} KNO_3 \\ AgNO_3 \\ KX \\ \end{vmatrix} Ag$$

where X is Br – or I –.

As described previously the activity coefficients $\gamma_{A_{\mathbf{Z}}NO_4}$ of AgNO₃ may be calculated from the relation

$$\Delta E = \frac{2.303 \ RT}{F} \log \gamma_{\text{AgNO}}$$

where ΔE is the change of e.m.f. upon the addition of KBr or KI to the right hand electrode compartment at a constant concentration of AgNO₃ and at concentrations of Ag⁺ and Br⁻ or I⁻ ions too low to precipitate AgBr or AgI. In Table I are given values of ΔE obtained in this system at several concentrations of AgNO₃ and KBr at 403, 438, 452, 474 and 500°.

The reproducibility of the measurements was not as good as in the chloride containing systems. Many duplicate series of measurements were made to check the reliability and reproducibility. Four somewhat low sets of measurements were rejected out of the total of 31 sets measured. Only one set of measurements (438°) was rejected without making at least three sets of measurements

Fig. 2.—Negative logarithm of the activity coefficient of silver nitrate in molten potassium nitrate as a function of the mole ratio of potassium iodide at several fixed mole ratios of silver nitrate.

at the given temperature and concentration of Ag-NO₃. The rejected set of measurements at 438° was rejected because it was inconsistent with data at other temperatures. Because of the low solubility of AgI, the measurements in the iodide containing systems were of necessity made at very low concentrations of Ag⁺ and I⁻ or at concentrations of KI in sufficient excess to keep AgI in solution. Figure 1 is a plot of e.m.f. vs. log R_{AgNO_3} , where R_{AgNO_4} is the mole ratio of AgNO₃, at 402° as obtained in the concentration cell

$$Ag \begin{vmatrix} AgNO_3 (R_{AgNO_3}) \\ KNO_3 \end{vmatrix} \begin{vmatrix} AgNO_3 (R_{AgNO_3}) \\ KNO_3 \end{vmatrix} Ag$$

for low concentrations of AgNO₃. The points fall on the line of the Nernst equation slope down to concentrations below 10^{-5} . This indicates that the electrode may be used to measure activities of AgNO₃ at these low concentrations. The e.m.f. changes upon the addition of iodide at fixed concentrations of AgNO₃ are given in Table I at the low concentrations of KI. The activity coefficients of AgNO₃ are plotted in Fig. 2 at the higher concentrations of KI.

Evaluation of K_1 , K_{12} and K_2 .—The method of evaluating K_1 , K_2 and K_{12} has been described previously.¹² In the bromide system large scale plots of $-\log \gamma_{AgNO_4}$ (or of ΔE) were made as a function of the mole ratio of $KBr(R_{KBr})$ at several fixed concentrations of $AgNO_3(R_{AgNO_4})$. The limiting slopes of these plots were obtained graphically at $R_{KBr} = 0$ and are plotted as a function of R_{AgNO_4} at five temperatures in Fig. 3a. The intercepts of the plots in Fig. 3a at $R_{AgNO_4} = 0$ are equal

(12) J. Braunstein, M. Blauder and R. M. Lindgren, J. Am. Chem. Soc., 84, 1529 (1962).

TABLE I 2.554 77.1 2.554	0 72.5 2.899 81.1
E.M.F. CHANGE OF HALF CELLS CONTAINING SOLUTIONS OF 3.097 90.1 2.90	4 81.5
AgNO3 in KNO3 Upon the Addition of KBr or KI 3.511 98.9	
$T = 403^{\circ}$ $\frac{R_{AgNO3}}{1.086 \times 10^{-3}}$	$R_{AgNO3} = R_{AgNO3} = R_{AgNO3} = 20 \times 10^{-3} = 1.418 \times 10^{-3}$
$R_{AgNO3} = R_{AgNO3} = R_{AgNO3} = R_{KBr} \Delta E R_{KB}$	$\Delta E \qquad R_{\rm KBr} \qquad \Delta E$
$R_{\rm KBr} \Delta E = R_{\rm KBr} \Delta E = R_{\rm KBr} \Delta E = 0.320 11.2 0.55$	1 143 0.404 10.0
$\times 10^{3}$ (mv.) $\times 10^{3}$ (mv.) $\times 10^{3}$ (mv.) 0.389 11.2 0.30	7 93 9 0.404 10.0
0.071 3.6 0.199 8.5 0.040 1.5 1.110 50.5 0.040	4 35.5 1.284 30.9
$.141 6.8 .426^a 23.3^a .104 3.7 1.011 12.1 1.44$	1 46.9 1.710 42.1
.289 14.0 .741 31.3 .149 5.1 1.010 01.1 1.00	8 59.5 2.158 53.9
500 23.5 .912 39.2 .242 8.3 2.689 70.3 2.71	1 69.9 2.829 69.7
.745 34.1 .319 10.7 .080 79.5	
	-000
$1.630 68.0 \qquad .481 16.2 \qquad T$	= 500°
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{29} \times 10^{-2}$ $\frac{1}{20} \times 10^{-2}$
2.390 92.1 $R_{KBr} \Delta E R_{KB} \times 10^3 (mv.) \times 1^3$	$\Delta E R_{\rm KBr} \Delta E$ $(mv_{\rm s}) \times 10^3 (mv_{\rm s})$
0.467 15.5 0.4	7 14 1 0 352 11 0
$T = 438^{\circ}$ 0.912 29.3 0.8	8 29.5 0.826 27.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$7 44 \ 2 1 \ 099 35 \ 6$
$R_{KBr} \propto 10^{-1} \pm 2 \text{ (mv.)}$ $R_{KBr} \propto 10^{-1} \pm 2 \text{ (mv.)}$ $1.10^{-1} \pm 1.10^{-1} \pm 1.10^{-1$	6 62 4 1 644 51 8
317 12.8 0.656 20.9 2.441 69.8 2.5	2 734 2024 61.9
540 21.7 2.831 79.0	2.461 72.7
864 33 4	2.924 83.2
1 490 52 5	3.347 92.4
$1,767$ 62.7 $R_{AgNO3} = I$	$A_{gNO3} = R_{AgNO3} =$
2.044 70.4 0.331×10^{-4} 0.6 $R_{\text{KBr}} \Delta E R_{\text{KBr}}$	$\begin{array}{cccc} 12 \times 10^{-3} & 0.634 \times 10^{-3} \\ \Delta E & R_{\rm KBr} & \Delta E \end{array}$
$\times 10^3$ (mv.) $\times 10^3$	$(mv.) \times 10^3 (mv.)$
$I = 452^{\circ} \qquad 0.550 17.8 0.40^{\circ}$	1 12.1 0.360 10.5
$\begin{array}{cccc} R_{AgN03} = 0.319 \times 10^{-2} & R_{AgN03} = 0.319 \times 10^{-2} & 1.059 & 33.1 & 0.84 \\ R_{KBr} \times 10^{3} & \Delta E \ (mv.) & R_{KBr} \times 10^{3} & \Delta E \ (mv.) & 1.059 & 33.1 & 0.84 \end{array}$	2 24.0 0.821 23.6
0.596 23.9 0.689 27.0 1.555 46.9 1.19	9 34.3 1.386 38.4
1.065 40.7 1.167 43.7 1.961 57.0 1.52	5 42.9 1.878 50.9
1.450 53.5 2.149 74.0 2.581 71.7 1.91	9 52.7
1.936 68.2 2.897 78.6 2.42	4 64.3
2.595 86.2 3.285 86.9 2.81	7 72.9
3.051 97.6 3.050 94.3 3.28	0 82.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$A_{gNO3} = A_{AgNO3} = A_{AgNO3} = 7 \times 10^{-2} 1.416 \times 10^{-3}$
$R_{\text{KBr}} \Delta E$ R_{R	$\begin{array}{cccc} \Delta E & R_{\rm KBr} & \Delta E \\ {}^{\rm s} & ({\rm mv.}) & \times 10^{\rm s} & ({\rm mv.}) \end{array}$
$\times 10^{\circ}$ (mv.) $\times 10^{\circ}$ (mv.) $\times 10^{\circ}$ (mv.) 0.352 8.8 0.35	6 8.7 0.794 19.7
0.180 0.6 0.445 15.5 0.523 18.6 0.954 24.2 0.81	2 19.6 1.472 35.3
.422 14.9 0.780 27.3 0.901 33.2 796 97 1 1.971 42.0 1.299 46.9 1.549 38.3 1.12	3 26.6 1.930 45.3
1.172 20 4 1.650 54 5 1.017 69 9 2.035 49.3 1.44	2 33.8 2.335 54.6
1,173 39.4 $1,000$ 04.3 $1,917$ $02.21,554$ 51.2 $2,096$ 65.2 $2,465$ 77.1 2.492 59.2 1.86	6 42.7 2.735 62.9
2.006 64 1 2.372 74 0 2.942 80 3 2.949 68.8 2.21	8 51.0 3.030 69.3
2.000 04.1 2.072 74.0 2.042 09.0 3.268 75.4 2.67	5 61.0
2.980 88.9 3.36	1 75.7
$R_{AgNO3} = R_{AgNO3} = R_{AgNO3} = T$	= 402°
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$A_{gNO3} = R_{AgNO3} =$
$\times 10^{4}$ (mv.) $\times 10^{4}$ (mv.) $\times 10^{3}$ (mv.) $\frac{6.84 \times 10^{-6}}{R_{VI}}$ ΔE Rvi	1×10^{-5} 3.12×10^{-5} ΔE $R_{\rm FI}$ ΔE
0.555 16.0 $\times 10^{6}$ (mv.) $\times 10^{6}$	(mv.) × 10 ⁵ (mv.)
1.072 30.7 0.341 9.6 0.474 12.2 0 0 0	0 0.43 1.5
1.486 41.8 0.830 23.3 1.114 29.3 0.48 1.4 0.32	2.0 1.68 5.9
2.015 56.6 1.468 40.5 1.459 39.4 1.0 3.0 0.80	4.5 4.10 13.8
$2.400 66.6 1.805 50.2 \qquad \qquad 2.0 7.1 2.21$	7.0 10.91 34.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.0
3.380 90.4 7.3 20.4 5.25	17.0
4.126 109.8 7.01	23.0
$T = 474^{\circ}$ 9.48	31.0
$K_{AgNO3} = K_{AgNO3} = R_{AgNO3} = R_{A$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R_{AgNO3} \approx R_{AgNO3} = 3.99 \times 10^{-5}$
······································	$\begin{array}{cccc} \epsilon_{XO3} \approx & R_{AgNO3} = \\ \times 10^{-5} & 3.99 \times 10^{-5} \\ \Delta E & R_{K1} & \Delta E \\ (m_{V}) & \times 10^{5} & (m_{V}) \end{array}$
0.412 14 5 0.430 14 4 0.470 15 1 0 0 0	$\begin{array}{cccc} \kappa_{NO3} \approx & R_{A\epsilon NO3} \approx \\ \times 10^{-5} & 3.99 \times 10^{-5} \\ \Delta E & R_{KI} & \Delta E \\ (mv.) & \times 10^{5} & (mv.) \\ 0 & 0 & 0 \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

6 .17	24.0	10.3	32.4		
12.9	46.5	14.0	48.9		
R_{AgN} 4.48 >	< 10 -5	$\frac{R_{AgN}}{6.68}$	10 -5	$\frac{R_{\text{AgNO}}}{7.55} \times$	10 ⁻⁵
$\stackrel{R_{\mathrm{KI}}}{\times} 10^{5}$	ΔE (mv.)	$\stackrel{R_{\rm KI}}{\times} 10^{5}$	ΔE (mv.)	$\stackrel{R_{ m KI}}{ imes}$ 10 ⁶	ΔE (mv.)
0	0	0	0	0	0
2.33	8.4	0.53	1.7	0.81	2.5
4.36	16.8	1.84	6.1	1.39	4.0
6.75	26.1	2.74	9.2	2.70	9.0
11.88	50.6	3.56	11.6	3.79	12.3
				4.39	12.8
				5.41	16.0
	$R_{ m KI} imes$	$R_{AgNOs} = 8.$	36×10^{-5} ΔE (1	nv.)	
	0 0.92 1.18 1.91		0		
			4.0	.0	
			4.	.4	
			7.8		
	2.3	37	8.	0	
	2.7	2	8.	9	
a Data -	atas		104:		

^a Data point not used in calculations.

to $(-K_1/2.303)$ and the limiting slopes are equal to $[(K_1^2 - 2K_1K_{12})/2.303]$ since

$$\lim_{\substack{\mathcal{K}_{\mathrm{KBr}}=0\\\mathcal{R}_{\mathrm{KBr}}=0}} \left(\frac{\partial \log \gamma_{\mathrm{AgNOs}}}{\partial R_{\mathrm{KBr}}} \right) = -(K_1/2.303) \quad (2)$$

and

1

 R_{i}

$$\lim_{\substack{R_{\rm KBr}=0\\R_{\rm AgNO_2}=0}} \left(\frac{\partial^2 \log \gamma_{\rm AgNO_1}}{\partial R_{\rm KBr} \partial R_{\rm AgNO_2}} \right) = \frac{(K_1^2 - 2K_1 K_{12})}{2.303} \quad (3)$$

Values of K_1 and K_{12} obtained in this manner are listed in Table II. K_2 was evaluated by a least squares fit of the experimental data (at fixed concentrations of AgNO₃) to the equation

$$-\log \gamma_{AgNO_{\delta}} = AR_{KBr} + BR^{2}_{KBr} \qquad (4)$$

The limit of a plot of B vs. R_{AgNO_3} at $R_{AgNO_3} = 0$ is

$$\lim_{A_{\rm SNO3}=0} B = \frac{(K_1 K_2 - 1/2 K_1^2)}{2.303} = B_0 \qquad (5)$$

and was evaluated from the plots given in Fig. 3b. Values of K_2 calculated from this limit are given in Table II. It should be emphasized that since K_2 and K_{12} are relatively large, relatively large uncertainties in the limit of the derivative in equation 3 or in the limit of *B* in equation 5 lead to relatively small uncertainties in K_2 or K_{12} . Values of K_1 calculated from $\lim A R_{AgNO_1} = 0$ differed by less than the estimated experimental error from the values evaluated graphically and given in Table II.

From the data in Table I the values of the limiting slopes

$$\left[\left(\frac{\partial\Delta E}{\partial R_{\rm KI}}\right)_{R_{\rm AgNOs}}\right]_{R_{\rm KI}} = 0$$

at 402° were evaluated graphically and are plotted in Fig. 4. Values of K_1 and K_{12} in Table II were evaluated from the plot in Fig. 4. The linearity of log γ_{AgNO_1} , within experimental precision to relatively large values of $-\log \gamma_{AgNO_1}(0.2)$ indicated that $K_2 \cong {}^{1}/{}_{2}K_1$. K_1 , K_2 and K_{12} and derived values of ΔA_i are given in Table II.

Comparison with Theory.—The generalized calculations based on the quasi lattice model lead to the relation for K_1 given in equation 1 and for K_2 and K_{12} for non-directional "bonding"⁶

$$K_{2} = \frac{(Z-1)}{2} \left(\beta_{2} - 1 + \frac{\beta_{2} - \beta_{1}}{\beta_{1} - 1}\right)$$
(6a)

 $\left(\frac{\partial \log \gamma_{AgNO_{g}}}{\partial R_{KBr}}\right)_{R_{AgNO_{g}}}$ evaluated at zero mole ratio of

potassium bromide, to infinite dilution of silver nitrate to obtain the stepwise association constants for AgBr and Ag_2Br^+ in molten potassium nitrate. (b) Extrapolation of the coefficients *B* to infinite dilution of silver nitrate to obtain the stepwise association constant for $AgBr_2^-$ in molten potassium nitrate.

Fig. 4.—Extrapolation of the limiting slopes,

 $\left(\frac{\partial \Delta \text{emf}}{\partial R_{\text{KI}}}\right)_{R_{\text{AgNO}_{3}}}$ evaluated at zero mole ratio of potassium

iodide, to infinite dilution of silver nitrate to obtain the stepwise association constants for AgI and Ag_2I^+ in molten potassium nitrate.

$$K_{12} = \frac{(Z-1)}{2} \left(\beta_{12} - 1 + \frac{\beta_{12} - \beta_1}{\beta_1 - 1} \right) \quad (6b)$$

where $\beta_1 = \exp(-\Delta A_i/RT)$, where ΔA_i are "specific bond free energies" and Z is a coördination number. Values of ΔA_1 , ΔA_2 and ΔA_{12} calculated from the association constants are listed in Table II using assumed values of Z of 4, 5 and 6 which should cover the entire range of possible values of the coördination number. For any given value of Z, the values of ΔA_1 , ΔA_2 and ΔA_{12} within the estimated error appear to be constant over the entire range of temperatures. This indicates that equations 1, 6a and 6b, with values ΔA_i independent of temperature, lead to a correct

				14		
	676°	711°	° T, °K. 725°	747°	773°	AgNOs-KI-KNOs 675°
$K_1 (\text{mole}/\text{mole}\mathrm{KNO}_2)^{-1}$	932	768	728	617	5 40	542 0
K_2 (mole/mole KNO ₃) ⁻¹	370^{a}	285^{a}	273	228	195	2700
K_{12} (mole/mole KNO ₂) ⁻¹	293	230	208	174	145	35 5 5
ΔA_1 (kcal./mole)	7.32	7.43	7.50	7.48	7.54	9.68
$Z = 4 \left\{ \Delta A_2 (\text{kcal./mole}) \right\}$	7.4	7.4	7.50	7.47	7.5	10.1
$(\Delta A_{12} (\text{kcal./mole}))$	7.08	7.12	7.12	7.08	7.04	10.4
ΔA_1 (kcal./mole)	7.01	7.12	7.18	7.16	7.21	9.38
$Z = 5 \left\{ \Delta A_2 \text{ (kcal./mole)} \right\}$	7.0	7.0	7.10	7.04	7.1	9.7
$(\Delta A_{12} (\text{kcal./mole}))$	6.70	6.72	6.70	6.64	6.61	10.0
ΔA_1 (kcal./mole)	6.78	6.86	6.93	6.87	6.93	9.13
$Z = 6 \left\{ \Delta A_2 \text{ (kcal./mole)} \right\}$	6.7	6.7	6.77	6.72	6.7	9.4
$(\Delta A_{12} (\text{kcal./mole}))$	6.40	6.40	6.38	6.33	6.28	9.8
Estimated $\%$ error in K_1	8	5	3	3	4	5
K_2	12	10	7	7	12	25
K ₁₂	10	8	7	7	9	12

AgI

5420

TABLE II CALCULATED VALUES OF K_1 , K_2 and K_{12} and Derived Values of ΔA_1 , ΔA_2 and ΔA_{12}

• Estimated from data at one concentration of AgNO₃ (0.315 \times 10⁻³).

and potentially useful prediction of the temperature coefficients, not only of K_1 , but also of K_2 and K_{12} .^{6,11}

A comparison of the values of K_1 at 402° (403°) for the formation of the ion pairs AgCl, AgBr and AgI is given in column 2 of Table III. Values of ΔA_1 for Z = 5, for example, averaged over measured temperature ranges are given in column 3. Flood, Førland and Grjotheim¹³ and Førland¹⁴ postulate that ΔF^0 or ΔH^0 , the free energy or heat change for the reciprocal reaction

 $KX (liq) + AgNO_{3} (liq) \rightleftharpoons AgX (liq) + KNO_{3} (liq)$

should be a measure of ΔA . Their expression is $Z\Delta A_1 \cong \Delta H_0$ (or $Z\Delta A_1 \cong \Delta F^0$). Because data are not available to calculate all the values of ΔH^0 or ΔF^0 the value of ΔH_{solid} for the reaction of the solids at 298° given in column 4 of Table III was substituted.¹⁵ These values of ΔH_{solid} at 298° probably differless than two or three kcal./mole from ΔH^0 . In the last column are given values of $\Delta H_{\text{solid}}/\Delta A_1$. These are smaller than any reasonable value of Z, but the relative constancy of this quantity is an indication that ΔH^0 or ΔH_{solid} is a fairly good meas-

(13) H. Flood, T. Førland and K. Grjotheim, Z. anorg. u. allgem. Chem., 276, 289 (1954).

(14) T. Førland, Norges Tekniske Vitenskapsakademi, Ser. 2, No. 4 (1957).

(15) F. D. Rossini, et al., "Circular of the National Bureau of Standards," 500 (1952).

TABLE III

	COMPARISO	COMPARISON OF A_1 , ΔA_1 AND ΔH_{Bolid}			
Ion pair	K1 (402°)	$\begin{array}{c} -\Delta A_1 \\ (Z = 5) \end{array}$	$-\Delta H_{solid}$	$\Delta H_{\rm Solid}/\Delta A_1$	
AgC1	396	5.88	14.6	2.5	
AgBr	932	7.14	18.5	2.6	

9.38

25.0

2.7

ure of the relative values of ΔA_1 in a particular solvent. Since ΔH^0 or ΔH_{solid} for these substances may be related mainly to differences in the van der Waals and in part to differences in the coulombic contributions to the lattice energies of the four salts in the reciprocal reaction, ΔA_1 and the tendency to association may be related to van der Waals and coulombic forces.¹⁶ Since the relative contributions of these types of interactions to ΔH_{solid} and to ΔA_1 probably differ depending on the particular system, only semiquantitative correlations may be made between the two. In a subsequent paper, the comparison of measurements in the AgNO3-NaBr-NaNO3 system with measurements in AgNO3-KBr-KNO3, AgNO3-NaCl-NaNO3 and AgNO3-KCl-KNO3 will be used to provide a clue to the types of forces involved.

Acknowledgment.—We wish to thank R. Bansal for checking some of the measurements given here.

(16) J. Mayer, J. Chem. Phys., 1, 270, 327 (1933).