junction potential of the cell might not be negligible ${ }^{5 b}$ and where the increased solubility of silver halides in excess halide would necessitate a knowledge of the association constants of AgX and X^{-}.

The specific Helmholtz free energies of formation ΔA of $\mathrm{CdX}{ }^{+}$and CdX_{2} (where X is bromide or iodide) were evaluated using the equations of the quasi-lattice model ${ }^{9.10}$ (asymmetric approximation) with the coördination number $Z=6$. Since the equations of the model were derived for ions of the same charge, they might not be expected to apply to a mixture of singly charged and multiply charged ions. It is seen from the values of ΔA in Table II that the variation with temperature although very small is somewhat larger than in the case of singly charged ions. ${ }^{11}$ The decrease of ΔA with increasing temperature is in the same direction as was observed for the association of silver ions with sulfate
(9) M. Blander, J. Chem. Phys., 34, 342 (1961).
(10) M. Blander and J. Braunstein, Ann. N. Y. Acad. Sci., 79, 838 (1960).
(11) D. G. Hill, J. Braunstein, M. Blander, J. Phys. Chem., 64, 1038 (1960).
ions in molten $\mathrm{KNO}_{3}{ }^{12}$ The "specific entropy of association" ${ }^{\prime \prime}\left(-\left(\frac{\partial \Delta A}{\partial T}\right)\right)$ may be characteristic of a change in the internal degrees of freedom of the ions involved in the association, although the effect in this case is almost within the experimental uncertainty. The relatively small variation of ΔA with temperature indicates that the quasi-lattice model may be useful for predicting the temperature coefficients of the association constants of singly charged ions with multiply charged ions as well as with other singly charged ions.

Acknowledgments.-One of us (J. B.) is grateful to Dr. Milton Blander of the Oak Ridge National Laboratory for many valuable discussions and to Dr. John Hess of the University of Maine and Professor T. F. Young for their comments on the manuscript. He would like to express appreciation for support of part of this work by the Coe Research Fund of the University of Maine and by a grant from the U. S. Atomic Energy Commission, AT-(30-1)-2873, to the University of Maine.
(12) W. J. Watt and M. Blander, ibid., 64, 729 (1960).
[Contribution from the Reactor Chemistry Division, Oar Ridge National Laboratory, ${ }^{3}$ Oar Ridge, Tennessee, and the Department of Chemistry, University of Maine, Orono, Maine]

Thermodynamic Association Constants of Silver Ions with Bromide or Iodide Ions in Molten Potassium Nitrate and their Comparison with the Quasi-lattice Theory

By A. Alvarez-Funes, ${ }^{1}$ J. Braunstein ${ }^{2}$ and M. Blander
Received August 21, 1961

Electromotive force measurements in dilute solutions of Ag^{+}and Br^{-}in molten KNO_{3} at $403,438,452,474$ and 500° and Ag^{+}and I^{-}in molten KNO_{3} at 402° were used to evaluate the association constants K_{1}, K_{2} and K_{12} for the formation of $\mathrm{AgX}, \mathrm{AgX}_{2}{ }^{-}$and $\mathrm{Ag}_{2} \mathrm{X}^{+}$, respectively, where $\mathrm{X}=\mathrm{Br}$ or I . The comparison of the values of K_{1} in the bromide containing system with the theoretical calculations based on the quasi-lattice model demonstrated that the temperature coefficients of the K_{1} are correctly predicted by the theory for any reasonable choice of the coördination number using values of the "specific bond free energies" ΔA_{1}, which are independent of temperature. For $Z=5$ average values of $\Delta A_{1}, \Delta A_{2}$ and ΔA_{12} are $7.14,7.0$ and $6.7 \mathrm{kcal} . /$ mole, respectively. The values of the "specific bond free energies" for the formation of the ion pairs $\mathrm{Ag}^{+}-\mathrm{Cl}^{-}, \mathrm{Ag}^{+}-\mathrm{Br}^{-}$and $\mathrm{Ag}^{+-} \mathrm{I}^{-}$in KNO_{3} for $Z=5$ are $5.8,7.1_{4}$ and $9.3_{8} \mathrm{kcal} /$ mole, respectively, and are consistent with the relative but not absolute values of the predictions of Flood, Førland and Grjotheim.

Introduction

Measurements of the activity coefficients of AgNO_{3} in molten KNO_{8} in dilute solutions of Ag^{+} and Br^{-}ions at five temperatures ranging from 403 to 500° and of Ag^{+}and I^{-}at 402° are described in this paper. In previous papers the comparison with calculations based on the quasi-lattice model ${ }^{4-6}$ of similar measurements in dilute solutions of Ag^{+}and $\mathrm{Cl}-$ in pure $\mathrm{KNO}_{3}{ }^{7,8}$ pure NaNO^{9} and in equimolar $\mathrm{NaNO}_{3}-\mathrm{KNO}_{3}{ }^{10}$ mixtures demon-

[^0]strated that the temperature coefficient of the association constant K_{1} for the formation of the ion pair $\mathrm{Ag}^{+}-\mathrm{Cl}^{-}$is correctly predicted by the expression derived from the theoretical calculations
\[

$$
\begin{equation*}
K_{1}=Z\left(\exp \left(-\Delta A_{1} / R T\right)-1\right) \tag{1}
\end{equation*}
$$

\]

where Z is a coordination number and ΔA_{1} is the "specific bond free energy" and was constant." ΔA_{1} was about 1 kcal . more negative in the solvent KNO_{3} than in NaNO_{3} and the value of ΔA_{1} in the equimolar $\mathrm{NaNO}_{3}-\mathrm{KNO}_{3}$ mixture appeared to be the average of the values of ΔA_{1} in the pure nitrates.

The purpose of this paper is to demonstrate that equation 1 gives a correct prediction of the temperature coefficient of K_{1} in the bromide containing system. We shall show further that the generalized calculations ${ }^{6}$ based on the quasi-lattice model, within experimental error, lead to a correct prediction of the temperature coefficients for the as-

[^1]

Fig. 1.-E.m.f. of the concentration cell

$$
\begin{gathered}
\mathrm{Ag} \mid \mathrm{AgNO}_{3}\left(R_{\left.\mathrm{Ag}^{2} \mathrm{NO}_{3}\right)} \| \mathrm{AgNO}_{3}\left(R_{\mathrm{Ag}-\mathrm{NO}_{4}}\right) \mid \mathrm{Ag}\right. \\
\mathrm{KNO}_{2} \\
\mathrm{KNO}_{3}
\end{gathered}
$$

Plotted against the mole ratio of silver nitrate in the right hand half cell in the absence of bromide or iodide ions.
sociation constants K_{2} and K_{12} for the formation respectively of $\mathrm{AgBr}_{2}-$ and $\mathrm{Ag}_{2} \mathrm{Br}^{+}$from the ion pair $\mathrm{Ag}^{+}-\mathrm{Br} r^{-}$if the "specific bond free energies" ΔA_{i} are assumed to be independent of temperature. Lastly we will illustrate the differences in the values of K_{1} and the values of ΔA_{1} for the association of Ag^{+}with $\mathrm{Cl}^{-}, \mathrm{Br}^{-}$and I^{-}in molten KNO_{3}.

Experimental

Reagent grade KBr and KI from Baker and Adamson were heated in a dry atmosphere to remove water and used as solute. Otherwise, the materials, apparatus and procedure were essentially the same as previously described. $7,3,10$

Results

Electromotive force measurements were made of the concentration cell

$$
\left.\mathrm{Ag}\left|\begin{array}{l}
\mathrm{KNO}_{3} \mathrm{AgNO}_{3}
\end{array}\right| \begin{aligned}
& \mathrm{KNO}_{3} \\
& \mathrm{AgNO} \\
& \mathrm{KX}
\end{aligned} \right\rvert\, \begin{gathered}
\mathrm{Ag} \\
\hline
\end{gathered}
$$

where X is Br^{-}or I^{-}.
As described previously the activity coefficients $\gamma_{\mathrm{AgNO}_{3}}$ of AgNO_{3} may be calculated from the relation

$$
\Delta E=\frac{2.303 R T}{F} \log \gamma_{\mathrm{A}_{\mathrm{RNO}}}
$$

where ΔE is the change of e.m.f. upon the addition of KBr or KI to the right hand electrode compartment at a constant concentration of AgNO_{3} and at concentrations of Ag^{+}and Br^{-}or I^{-}ions too low to precipitate AgBr or AgI . In Table I are given values of ΔE obtained in this system at several concentrations of AgNO_{3} and KBr at 403, $438,452,474$ and 500°.

The reproducibility of the measurements was not as good as in the chloride containing systems. Many duplicate series of measurements were made to check the reliability and reproducibility. Four somewhat low sets of measurements were rejected out of the total of 31 sets measured. Only one set of measurements (438°) was rejected without making at least three sets of measurements

Fig. 2.-Negative logarithm of the activity coefficient of silver nitrate in molten potassium nitrate as a function of the mole ratio of potassium iodide at several fixed mole ratios of silver nitrate.
at the given temperature and concentration of Ag NO_{3}. The rejected set of measurements at 438° was rejected because it was inconsistent with data at other temperatures. Because of the low solubility of AgI , the measurements in the iodide containing systems were of necessity made at very low concentrations of Ag^{+}and I^{-}or at concentrations of KI in sufficient excess to keep AgI in solution. Figure 1 is a plot of e.m.f. vs. $\log R_{\mathrm{A}_{2} \mathrm{NO}_{3}}$, where $R_{\mathrm{AgNO}_{2}}$ is the mole ratio of AgNO_{3}, at 402° as obtained in the concentration cell

$$
\mathrm{Ag}\left|\begin{array}{l}
\mathrm{AgNO} \\
\mathrm{KNO}_{3}
\end{array}\left(R_{\mathrm{AgNO}_{8}}\right)\right|\left|\begin{array}{l}
\mathrm{AgNO}_{3}\left(R_{\mathrm{AgNO}_{3}}\right)
\end{array}\right| \mathrm{Ag}
$$

for low concentrations of AgNO_{3}. The points fall on the line of the Nernst equation slope down to concentrations below 10^{-5}. This indicates that the electrode may be used to measure activities of AgNO_{3} at these low concentrations. The e.m.f. changes upon the addition of iodide at fixed concentrations of AgNO_{3} are given in Table I at the low concentrations of KI. The activity coefficients of AgNO_{3} are plotted in Fig. 2 at the higher concentrations of KI.

Evaluation of K_{1}, K_{12} and K_{2}. -The method of evaluating K_{1}, K_{2} and K_{12} has been described previously. ${ }^{12}$ In the bromide system large scale plots of $-\log \gamma_{\mathrm{AgNO}_{3}}$ (or of ΔE) were made as a function of the mole ratio of $\mathrm{KBr}\left(R_{\mathrm{KBr}}\right)$ at several fixed concentrations of $\mathrm{AgNO}_{3}\left(R_{\mathrm{AgNO}_{4}}\right)$. The limiting slopes of these plots were obtained graphically at $R_{\mathrm{KBr}}=0$ and are plotted as a function of R_{AgNO} at five temperatures in Fig. 3a. The intercepts of the plots in Fig. 3a at $R_{\mathrm{AgNO}_{3}}=0$ are equal
(12) J. Braunstein, M. Blander and R. M. Lindgren, J. Am. Chem. Soc., 84, 1529 (1962).

a Data point not used in calculations.
to ($-K_{1} / 2.303$) and the limiting slopes are equal to [$\left.\left(K_{1}{ }^{2}-2 K_{1} K_{12}\right) / 2.303\right]$ since

$$
\begin{equation*}
\lim _{\substack{R_{\mathrm{KBr}}^{R_{\mathrm{A} \mathrm{NO}}=0} 0}}\left(\frac{\partial \log \gamma_{\mathrm{Ag} \mathrm{NO}_{3}}}{\partial R_{\mathrm{KBr}}}\right)=-\left(K_{1} / 2.303\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\substack{R_{\mathrm{Kb}}=0 \\ R_{\mathrm{A}} \mathrm{NO}_{8}=0}}\left(\frac{\partial^{2} \log \gamma_{\mathrm{Az}} \mathrm{NO}_{\mathrm{I}}}{\partial R_{\mathrm{KBr}} \partial R_{\mathrm{Ag}_{\mathrm{A}} \mathrm{NO}_{\mathrm{s}}}}\right)=\frac{\left(K_{1}^{2}-2 K_{1} K_{12}\right)}{2.303} \tag{3}
\end{equation*}
$$

Values of K_{1} and K_{12} obtained in this manner are listed in Table II. K_{2} was evaluated by a least squares fit of the experimental data (at fixed concentrations of AgNO_{3}) to the equation

$$
\begin{equation*}
-\log \gamma_{\mathrm{Ag} \mathrm{NO}_{3}}=A R_{\mathrm{KBr}}+B R_{\mathrm{KBr}}^{2} \tag{4}
\end{equation*}
$$

The limit of a plot of B vs. $R_{\mathrm{AgNO}_{8}}$ at $R_{\mathrm{ABNO}_{3}}=0$ is

$$
\begin{equation*}
\lim _{R_{A_{8} \times O_{8}=0}} B=\frac{\left(K_{1} K_{2}-1 / 2 K_{1}^{2}\right)}{2.303}=B_{0} \tag{5}
\end{equation*}
$$

and was evaluated from the plots given in Fig. 3b. Values of K_{2} calculated from this limit are given in Table II. It should be emphasized that since K_{2} and K_{12} are relatively large, relatively large uncertainties in the limit of the derivative in equation 3 or in the limit of B in equation 5 lead to relatively small uncertainties in K_{2} or K_{12}. Values of K_{1} calculated from $\lim A R_{\mathrm{AgNO}_{3}}=0$ differed by less than the estimated experimental error from the values evaluated graphically and given in Table II.

From the data in Table I the values of the limiting slopes

$$
\left[\left(\frac{\partial \Delta E}{\partial R_{\mathrm{KI}}}\right)_{R_{\mathrm{A} \mathrm{~N}} \mathrm{NO}_{:}}\right]_{R_{\mathrm{KI}}=0}
$$

at 402° were evaluated graphically and are plotted in Fig. 4. Values of K_{1} and K_{12} in Table II were evaluated from the plot in Fig. 4. The linearity of $\log \gamma_{\mathrm{AgNO}}$, within experimental precision to relatively large values of $-\log \gamma_{\mathrm{AgNO}_{3}}$ (0.2) indicated that $K_{2} \cong{ }^{1} / 2 K_{1} . \quad K_{1}, K_{2}$ and K_{12} and derived values of ΔA_{i} are given in Table II.

Comparison with Theory.-The generalized calculations based on the quasi lattice model lead to the relation for K_{1} given in equation 1 and for K_{2} and K_{12} for non-directional "bonding" ${ }^{6}$

$$
\begin{equation*}
K_{2}=\frac{(Z-1)}{2}\left(\beta_{2}-1+\frac{\beta_{2}-\beta_{1}}{\beta_{1}-1}\right) \tag{6a}
\end{equation*}
$$

Fig. 3.-(a) Extrapolation of the limiting slopes, $-\left(\frac{\partial \log \gamma \operatorname{AgNO}_{3}}{\partial R_{\mathrm{KBr}}}\right)_{R_{\mathrm{AgNO}_{3}}}$ evaluated at zero mole ratio of potassium bromide, to infinite dilution of silver nitrate to obtain the stepwise association constants for AgBr and $\mathrm{Ag}_{2} \mathrm{Br}^{+}$in molten potassium nitrate. (b) Extrapolation of the coefficients B to infinite dilution of silver nitrate to obtain the stepwise association constant for $\mathrm{AgBr}_{2}{ }^{-}$in molten potassium nitrate.

Fig. 4.-Extrapolation of the limiting slopes, $\left(\frac{\partial \Delta \mathrm{emf}}{\partial R_{\mathrm{K} 1}}\right)_{R_{\mathrm{AgNO}_{3}}}$ evaluated at zero mole ratio of potassium
iodide, to infinite dilution of silver nitrate to obtain the stepwise association constants for AgI and $\mathrm{Ag}_{2} \mathrm{I}+$ in molten potassium nitrate.

$$
\begin{equation*}
K_{12}=\frac{(Z-1)}{2}\left(\beta_{12}-1+\frac{\beta_{12}-\beta_{1}}{\beta_{1}-1}\right) \tag{6~b}
\end{equation*}
$$

where $\beta_{1}=\exp \left(-\Delta A_{i} / R T\right)$, where ΔA_{i} are "specific bond free energies" and Z is a coördination number. Values of $\Delta A_{1}, \Delta A_{2}$ and ΔA_{12} calculated from the association constants are listed in Table II using assumed values of Z of 4,5 and 6 which should cover the entire range of possible values of the coördination number. For any given value of Z, the values of $\Delta A_{1}, \Delta A_{2}$ and ΔA_{12} within the estimated error appear to be constant over the entire range of temperatures. This indicates that equations $1,6 \mathrm{a}$ and 6 b , with values ΔA_{i} independent of temperature, lead to a correct

Table II
Calculated Values of K_{1}, K_{2} and K_{12} and Derived Values of $\Delta A_{1}, \Delta A_{2}$ and ΔA_{12}

	$676{ }^{\circ}$	711°	$\begin{gathered} \mathrm{O}-\mathrm{KBr} \mathrm{Br}-\mathrm{F} \\ \mathrm{~T}_{\mathrm{o}} \mathrm{OK} \mathrm{~K} . \end{gathered}$	747°	$773{ }^{\circ}$	$\mathrm{AgNO}_{675^{\circ}} \mathrm{KI}^{-\mathrm{KNO}_{3}}$
$K_{1}\left(\text { mole/mole } \mathrm{KNO}_{3}\right)^{-1}$	932	768	728	617	540	5420
$K_{2}\left(\text { mole } / \text { mole } \mathrm{KNO}_{3}\right)^{-1}$	$370^{\text {a }}$	$285{ }^{\text {a }}$	273	228	195	2700
$K_{12}\left(\text { mole } / \text { mole } \mathrm{KNO}_{2}\right)^{-1}$	293	230	208	174	145	3555
$\int \Delta A_{1}$ (kcal./mole)	7.32	7.43	7.50	7.48	7.54	9.68
$Z=4\left\{\Delta A_{2}\right.$ (kcal. $/ \mathrm{mole}$)	7.4	7.4	7.50	7.47	7.5	10.1
(ΔA_{12} (kcal./mole)	7.08	7.12	7.12	7.08	7.04	10.4
(ΔA_{1} (kcal./mole)	7.01	7.12	7.18	7.16	7.21	9.38
$Z=5\left\{\Delta A_{2}\right.$ (kcal. $/ \mathrm{mole}$)	7.0	7.0	7.10	7.04	7.1	9.7
(ΔA_{12} (kcal./mole)	6.70	6.72	6.70	6.64	6.61	10.0
$\int \Delta A_{1}$ (kcal./mole)	6.78	6.86	6.93	6.87	6.93	9.13
$Z=6\left\{\Delta A_{2}(\mathrm{kcal} . / \mathrm{mole})\right.$	6.7	6.7	6.77	6.72	6.7	9.4
$\left(\Delta A_{12}\right.$ (kcal./mole)	6.40	6.40	6.38	6.33	6.28	9.8
Estimated \% error in K_{1}	8	5	3	3	4	5
K_{2}	12	10	7	7	12	25
K_{12}	10	8	7	7	9	12

${ }^{a}$ Estimated from data at one concentration of $\mathrm{AgNO}_{3}\left(0.315 \times 10^{-3}\right)$.
and potentially useful prediction of the temperature coefficients, not only of K_{1}, but also of K_{2} and $K_{12 .}{ }^{6.11}$

A comparison of the values of K_{1} at $402^{\circ}\left(403^{\circ}\right)$ for the formation of the ion pairs $\mathrm{AgCl}, \mathrm{AgBr}$ and AgI is given in column 2 of Table III. Values of ΔA_{1} for $Z=5$, for example, averaged over measured temperature ranges are given in column 3. Flood, Førland and Grjotheim ${ }^{13}$ and Førland ${ }^{14}$ postulate that ΔF^{0} or ΔH^{0}, the free energy or heat change for the reciprocal reaction

$$
\mathrm{KX}(\text { liq })+\mathrm{AgNO}_{3}(\text { liq }) \rightleftarrows \mathrm{AgX}(\text { liq })+\mathrm{KNO}_{3}(\text { liq })
$$

should be a measure of ΔA. Their expression is $Z \Delta A_{1} \cong \Delta H_{0}$ (or $Z \Delta A_{1} \cong \Delta F^{0}$). Because data are not available to calculate all the values of ΔH^{0} or ΔF^{0} the value of $\Delta H_{\text {solid }}$ for the reaction of the solids at 298° given in column 4 of Table III was substituted. ${ }^{15}$ These values of $\Delta H_{\text {solid }}$ at 298° probably differless than two or three kcal./mole from ΔH^{0}. In the last column are given values of $\Delta H_{\text {solid }} / \Delta A_{1}$. These are smaller than any reasonable value of Z, but the relative constancy of this quantity is an indication that ΔH^{0} or $\Delta H_{\text {solid }}$ is a fairly good meas-
(13) H. Flood, T. Forland and K. Grjotheim, Z. anorg. u. allgem. Chem., 276, 289 (1954).
(14) T. Førland, Norges Tekniske Vitenskapsakademi, Ser. 2, No. 4 (1957).
(15) F. D. Rossini, et al., "Circular of the National Bureau of Standards," 500 (1952).

Table III
Comparison of $K_{1}, \Delta A_{1}$ and $\Delta H_{\text {bolid }}$

Ion pair	$\left.K_{1}{ }_{0}\right)$ $\left(402^{\circ}\right)$	$\left(\bar{Z}=A_{1}{ }_{5}\right)$	$-\Delta H_{\text {solld }}$	$\Delta H_{\text {solid }} / \Delta A_{1}$
AgCl	396	5.88	14.6	2.5
AgBr	932	7.1_{4}	18.5	2.6
AgI	5420	9.38	25.0	2.7

ure of the relative values of ΔA_{1} in a particular solvent. Since ΔH^{0} or $\Delta H_{\text {solid }}$ for these substances may be related mainly to differences in the van der Waals and in part to differences in the coulombic contributions to the lattice energies of the four salts in the reciprocal reaction, ΔA_{1} and the tendency to association may be related to van der Waals and coulombic forces. ${ }^{16}$ Since the relative contributions of these types of interactions to $\Delta H_{\text {solid }}$ and to ΔA_{1} probably differ depending on the particular system, only semiquantitative correlations may be made between the two. In a subsequent paper, the comparison of measurements in the $\mathrm{AgNO}_{3}-\mathrm{NaBr}-\mathrm{NaNO}_{3}$ system with measurements in $\mathrm{AgNO}_{3}-\mathrm{KBr}-\mathrm{KNO}_{3}, \mathrm{AgNO}_{3}-$ $\mathrm{NaCl}-\mathrm{NaNO}_{3}$ and $\mathrm{AgNO}_{3}-\mathrm{KCl}-\mathrm{KNO}_{3}$ will be used to provide a clue to the types of forces involved.
Acknowledgment.-We wish to thank R. Bansal for checking some of the measurements given here.
(16) J. Mayer, J. Chem. Phys., 1, 270, 327 (1933).

[^0]: (1) Fellow of the Consejo Nacional de Investigaciones Cientificas y Teenicas of Argentina.
 (2) On sabbatical leave from the University of Maine with the Reactor Chemistry Division of Oaik Ridge National Laboratory Sept. 1960-August 1961.
 (3) Operated for the United States Atomic Energy Commission by Union Carbide Corporation.
 (4) M. Blander, J. Phys. Chem., 63, 1262 (1959).
 (5) M. Blander and J. Braunstein, Ann. N. Y. Acad. Sci., 79, 838 (1960).
 (6) M. Blander, J. Chem. Phys., 34, 342 (1961).
 (7) M. Blander, F. F. Blankenship and R. F. Newton, J. Phys. Chem., 63, 1259 (1959).
 (8) J. Braunstein and M. Blander, ibid., 64, 10 (1960).
 (9) D. G. Hill, J. Braunstein and M. Blander, ibid., 64, 1038 (1960).

[^1]: (10) D. G. Hill and M. Blander, ibid., to be published.
 (11) In systems in which the change of the entropy of the internal degrees of freedom of the ions involved in the association process is small $\mathrm{d} \Delta A_{\mathrm{i}} / \mathrm{d} T \cong 0$ and $\Delta A_{i} \cong \Delta E_{\mathrm{i}}$.

